Amazone awarded three silver medals leading up to Agritechnica 2019

  • 30 October 2019
  • 1099
  •  Falcon Equipment
  •  
  •  




Easy Mix
Significant amounts of mixed fertilisers are prepared at decentralised locations with the objective of using inexpensive individual fertilisers while at the same time applying several nutrients in the desired ratio. Apart from some mixed fertilisers produced as standard with a defined nutrient ratio and defined initial components, up until now there have been no aids, e.g. spreading charts, for the majority of these customised fertiliser mixtures that would enable fertilisers spreaders to be optimally adjusted in accordance with the properties of the mixture produced.

With the “EasyMix” app from Amazone, used with the company’s two-disc spreaders, it is now possible to estimate the lateral distribution of the individual components and to determine the optimum fertiliser spreader adjustment for the mixture before it is produced. This is achieved by entering the planned mixing components, the fertiliser spread properties and the desired working width. Alternating effects of the individual components on the spreading disc and their varying flight behaviour are taken into account when determining the expected spreading quality.

As a result, the app reduces the danger of uneven nutrient distribution resulting from unsuitable mixture components, an excessively large working width or an incorrect fertiliser spreader adjustment.

AmaSelect Row
When hoeing row crops, the areas between the rows are processed, however the longitudinal spaces between the plants are not.

Currently, this gap in weed control cannot be closed with purely mechanical methods, however this is possible with a combination of special boom sprayers. Here the operating conditions of both systems must be seen as rather contrary. The hoe operates optimally under dry conditions and the crop protection agents are more effective with corresponding soil moisture.

The AmaSelect Row System enables the user to switch over from area application to boom application, without conversion measures and at any time, with a “standard” field sprayer in field operation in various row crops (sugar beets, maize, potatoes, etc.). For this purpose, the AmaSelect 4-fold nozzle body offers a 50 cm partial width switching and nozzle positions at a 25 cm and 50 cm distance with flexible switching of each individual nozzle. This unique nozzle body design enables row referencing with both 75 cm and 50 cm row widths without conversion measures. A nozzle configuration for the individual farm is equipped and programmed depending on the row width of the crops. The system can be switched over from boom application to the usual area application as desired at the press of a button. The desired application quantity for areas and boom application is stored in the control terminal. As a result, the application quantity is automatically adjusted during a function change, preventing overdosing in the boom.

The basic condition for boom application with this method is, of course, the exact position of the cultivated crop being captured during sowing by means of RTK, as well as exact track guidance. In addition, optimum boom positioning is assumed, as a combination of spraying angle and distance from the ground determines the width of the spray band. Using the special nozzles with a 40 degree spraying angle, a spray width of 25 cm results when it is 35 cm from the ground. This, of course, can be varied depending on the boom height.

Traditionally, boom spraying is often combined with mechanical weed control. With AmaSelect Row a decoupling of the two methods is achieved; each system can be optimally run accordingly, enabling the performance of both systems to be optimally utilised. As a result, the amount of crop protection agents used in row crops is considerably reduced without a loss of performance. That lowers costs while protecting the environment.

Constant innovation in agriculture has led to the appearance of a variety of intelligent machines, implements, sensors and software. This means that implements can be reliably connected and used through ISOBUS. Yet, what has been missing up to now is an open system that provides the basis for importing not only data, but also and above all logic and knowledge into the machines. NEVONEX is such an open platform. Like an operating system, it forms the basis for software applications (FEATURES) to program new or existing farm machines. Sourced from the automotive industry, NEVONEX is based on reliable and hack-proof technology with end-to-end encryption. Similar to existing apps, it allows users to run FEATURES directly on agricultural machines, requiring only a suitable controller and registration on the NEVONEX platform. An integrated interface management allows smooth access to the platform via the ISOBUS or using proprietary signals. The innovative aspect of this product is the fact that it defines universal interfaces, provides secure and reliable reading and control rights, and accumulates the collected expertise available in the agricultural industry and in its upstream and downstream sectors.





Related Articles